

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 1.

Glossary.
 Note: entries that have been revised have the latest revision mm/yy

appended to their first line. A numbered comment will be added, in
most cases, explaining the change.

 March, 2008. We are starting to mark up this glossary to highlight

its controlled vocabulary structure. Ultimately, the entries in a
controlled vocabulary will become the predicates of a first-order
predicate logic (FOPL) formalism, at which point software-
implemented inferencing will be possible against the glossary, and
against any data dictionaries or other glossaries based on it.

 Every controlled vocabulary entry is itself an entry in the glossary.

As soon as we can get to it, we will mark controlled vocabulary
instances by italicizing their appearance in glossary definitions.

• 12/31/9999. (02/08) A value whose semantics are that of "no value", but which is
treated by the DBMS as a valid date.

1. When "12/31/9999" appears in the effectivity end date of a versioned row,

it takes on additional semantics. It means "effectivity end date unknown".
In addition, it also represents an assumption that the row it appears in is
effective "until further notice". It is because of this interpretation that we
can let the DBMS treat it as a valid date, i.e. as a date greater than any date
specified in a query.

2. However, semantically, "12/31/9999" almost never would be a valid date,

because no business activities that we know of are concerned with an
effectivity time period that extends up to but not beyond that date nearly
eight-thousand years in the future.

• Active episode. (03/08) An episode whose most recent version is not a temporal
delete version, and whose most recent version does not have an effectivity end
date in the past.

1. A past episode is not an active episode.

2. A current episode is an active episode.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 2.

3. A future episode may or may not be an active episode. The future episodes
which are active are the ones whose most recent version is not a logical
delete.

• Adjacent versions. (03/8) Versions of the same object in which there are no clock
ticks between the two versions.

1. Explicitly adjacent versions. Adjacent versions in which the clock tick of

the effective end date of the earlier version is exactly one clock tick earlier
than the clock tick of the effective begin date of the later version.

2. Implicitly adjacent versions. Adjacent versions in which the effectivity

end date of the earlier version is “12/31/9999”. Implicitly adjacent
versions are the result of an episode merge.

• Child table, child row. (02/08)
• (a) Y is a child table to an object table X if and only if there is a

foreign key dependency from Y to X. A row in Y is a child to a
row in X if and only if the row in Y has a foreign key whose value
is identical to the primary key value of that related row in X.

• (b) Y is a child table to a version table X if and only if there is an

object foreign key dependency from Y to X. A row in Y is a child
to a row in X if and only if the row in Y has an object foreign key
whose value is identical to the object identifier of the related row
in X, and the effectivity time period of that row in X wholly
contains the effectivity time period of the row in Y.

1. Parent/child relationships typically have a maximum cardinality of

one/many, and a minimum cardinality of optional for the parent and
required for the child. But it is a matter of which table contains the foreign
key and which table is the reference of that foreign key that differentiates
parent from child tables and rows. Cardinality constraints are not what
make the difference.

2. Child tables/rows are also sometimes referred to as “dependent tables” or

“dependent rows”, or various cognates (e.g. “RI-dependent tables”, “RI-
dependent rows”).

3. Revised 02/08 so the distinction applies when the dependency is to either

an object or a version table.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 3.

• Clock tick. (03/08) The transition from one point in time to the next point in time,

according to the "clock" which defines the granularity for all dates involved in
temporal data management.

1. The clock tick granularity used throughout these articles is a date. Thus,

one clock tick is the transition from one day to the next day. In many real-
world situations, the clock tick will be an hour, a minute, a second or even
a full timestamp.

• Current version. (02/08) A version whose effectivity begin date is in the past, and
whose effectivity end date is either unknown (represented by “12/31/9999”) or in
the future.

1. Current versions are always the most recent versions of current episodes.

• Effectivity time period. (02/08) The period of time for which a version is regarded
as the truth about an object.

1. In our version patterns, an effectivity time period is defined by an

effectivity begin date and an effectivity end date, where "date" may be a
calendar date or any other "tick of the clock" (as described in Part 2 of this
series).

2. Our convention is that the time period begins on the begin date, but ends

one clock tick prior to the end date.

• EID, enterprise identifier. (03/08) The globally unique identifier of an object.

• Episode. (03/08) A series or one or more adjacent versions of an object in which
the inaugural version is either the first version of that object, or a version which is
not temporally adjacent to the version it immediately follows.

• In the first case, it is the inaugural version of the inaugural episode of the

object.

• In the second case, it is the inaugural version of a non-inaugural episode.

1. See “supercession”.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 4.

2. Thus, the first version of an object creates the initial episode of that
object. That episode remains the current episode until a logical delete
version for that object is inserted into the table, or until the effectivity
end date of its most recent version is reached.

3. If, when a version Y is inserted into the table, the most recent version

of that object already in the table is a logical delete version, or is a
version whose effectivity end date is in the past, then Y inaugurates a
non-initial episode of that object. That remains the current episode
until a logical delete version for that object is inserted into the table, or
until the effectivity end date of its current version is reached.

4. Related terminology:

a. Current episode. An episode of an object whose inaugural
(oldest) version has an effectivity begin date not in the future.

b. Terminated episode. An episode of an object whose most

recent version is a logical delete.

c. Past (non-terminated) episode. An episode of an object whose
most recent version is in the past, but is not a logical delete.

d. Future episode. An episode of an object whose inaugural

version has an effectivity begin date in the future.

e. Future terminated episode. An future episode of an object
whose most recent version is a logical delete.

f. Temporally adjacent episodes. A series of temporally adjacent

versions of the same object in which at least one version, which
is neither the earliest nor the latest version of the object, is a
logical delete version.1

• Episode merge. The process by which a current and a future episode of the same
object become one episode when the effectivity end date of the most recent

1 Those who have read C. J. Date, Hugh Darwen, Nikos Lorentzos, Temporal Data and the

Relational Model (Morgan-Kaufmann, San Francisco, 2002) may notice that their approach does
not permit temporally adjacent versions. (see pp. xxxx). (They do not use the concept of an
episode in their discussions, however.) They believe that the Closed World Assumption (CWA)
means that adjacent episodes are illegitimate. Also, they claim that requiring episodes to be non-
adjacent is "a reasonable assumption". In later articles, we will explain why we think their
interpretation of the CWA is wrong. As for whether their assumption is "reasonable", we know
from real-world experience that it is not.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 5.

version of the current episode is “12/31/9999”, and the current date reaches the
effectivity begin date of the inaugural version of the future episode.

1. This process merges the two versions because it creates a chronological

sequence of versions in which there are no clock ticks between two
chronologically successive versions.

2. When two episodes are merged, the result is an episode in which the most

recent version of the earlier episode and the inaugural version of the later
episode are implicitly adjacent. (See “Adjacent versions”.)

• Future episode. (02/08) An episode whose first version has an effectivity begin
date in the future.

• Future version. (02/08) Any version of a future episode.

• Inaugural version (of an episode). (02/08) The version of an episode of an object
with the chronologically earliest effectivity begin date.

• Most recent version. (03/08) A version of an episode of an object whose
effectivity begin date is chronologically the latest across all versions of that
episode.

1. Until we begin discussing Version Pattern 7, we will assume that no two

versions of the same object can have the same effectivity begin date. After
all, between that date and the earliest effectivity end date between them,
that would mean that we had two different statements of what was true
about an object during that period of time. There can only be one truth,
and should be only one version of it.

2. With Version Pattern 7, we will discuss cases in which two or more

versions of the same object might have the same effectivity begin date.

• One source of such cases is when there is a business requirement to
correct an error in a version table, but also to retain, as queryable
history, the version discovered to be in error.

• Another source of such cases is when one of several incompatible

descriptions might be true of an object, in a given time period, but
we don’t know which one.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 6.

3. Changed the definition substantively, by making most current versions

relative to the episodes they occur in.

• Object foreign key (OFK). (02/08) A column in a versioned or non-versioned
table which contains the object identifier used by one or more rows in a (not
necessarily distinct) version table.

1. For example, in Figure 2 of Part 20, client-nbr in the Policy table is an

OFK.

2. As an illustration of temporal RI, the referencing Policy table row must
have the value of a client-nbr in a row in the Client table such that the
effectivity period of the referenced row wholly contains the effectivity
period of that row, or is itself an object row (thus without an effectivity
period).

3. "versioned table" changed to "versioned or non-versioned" in Part 21.

• Object referential integrity, object RI (02/08). The constraint that a row
containing an OFK must reference a row whose object identifier value is identical
to that OFK value, and whose effectivity time period wholly contains the
effectivity time period of the referencing row.

1. Object RI cannot be enforced by today's RDBMSs. This follows from the

fact that OFKs reference an object only indirectly, by means of the one or
more versions that implement it. In those versions, the referenced object
identifier is only part of the primary key of its table, and is thus not
necessarily (or even usually) unique.

2. Object RI requires that the referenced (parent) table be a versioned table.

But the referencing (child) table, the one that contains the OFK, may itself
be either a versioned or an object (non-versioned) table.

• Object table, object. (02/08) A table whose rows represent persistent objects.
Sometimes called a "non-versioned" table.

1. Persistent objects are things that exist over time and can change over time,

such as vendors, customers, employees, regulatory agencies, products,
services, bills of material, invoices, purchase orders, claims, certifications,
etc.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 7.

2. In an OLAP, star-schema database, dimension tables are tables of
persistent objects.2

3. In an OLTP database, assuming that there are no version tables in the

database, object tables are all the tables which are not transaction tables.

4. Roughly speaking, object tables are the tables which are the concern of
Master Data Management.

• Original delete. (03/08) A delete transaction against a versioned object.

1. A delete transaction written as though its target is an object table, not a
version table.

2. Thus, in our ongoing example, a business user submitting a "delete client"

transaction will think in terms of a Client table and a delete of one of its
rows, not in terms of a Client Version table and the supercession of one of
its rows.

• Original insert. (03/08) A insert transaction against a versioned object.

1. An insert transaction written as though its target is an object table, not a
version table.

2. Thus, in our ongoing example, a business user submitting an "insert

client" transaction will think in terms of a Client table and an insert of a
row representing a new client, not in terms of a Client Version table and
the insert of a row representing a version of that client.

• Original (row-level) update. (03/08) A row-level update transaction against a
versioned object.

1. An update transaction written as though its target is an object table, not a

version table.

2. Thus, in our ongoing example, a business user submitting an "update
client" transaction will think in terms of a Client table and an update of

2 For a more in-depth discussion of different types of tables, see the articles "An Ontology of

Tables", at MindfulData.com.

http://www.mindfuldata.com/

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 8.

one of its rows, not in terms of a Client Version table and a supercession
of one of its rows.

• Original update. (03/08) A update transaction (insert, row-level update, delete or
upsert) against a versioned object

1. An update transaction written as though its target is an object table, not a

version table.

2. Note that "update", in its first occurrence, is used generically, to mean any
transaction that alters the state of the database; while in its second
occurrence (qualified by "row-level"), it is used specifically in the sense of
a transaction that affects one or more rows that already exist in the
database.

3. In these discussions, all original updates, unless otherwise noted, will be

current transactions. Later in this series, we will describe original updates
that are future-dated, meaning that the effectivity begin date is a date later
than the date of the physical transaction itself.

4. Later in this series, we will also describe original updates against

hypothetical versions.

5. Later in this series, we will also describe original updates that create
versions that correct other versions.

• Original upsert. (03/08) An upsert transaction against a versioned object.

1. An upsert transaction written as though its target is an object table, not a
version table.

2. Thus, in our ongoing example, a business user submitting an "upsert

client" transaction will think in terms of a Client table and either an insert
of a new row representing a new client if the client does not already exist
on the database, or else an update of an existing row if he does.

3. An upsert transaction against a non-versioned table, of course, is one that

will be translated into either a physical insert against that table or else a
physical update.

• Parent table, parent row. (02/08)

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 9.

• (a) X is an object table which is a parent table to a table Y if and
only if there is a foreign key dependency from Y to X. A row in Y
is a child to a row in X if and only if the row in Y has a foreign key
whose value is identical to the primary key value of that related
row in X.

• (b) X is a version table which is a parent table to a table Y if and

only if there is an object foreign key dependency from Y to X. A
row in Y is a child to a row in X if and only if the row in Y has an
object foreign key whose value is identical to the object identifier
of the related row in X, and the effectivity time period of that row
in X wholly contains the effectivity time period of the row in Y.

• Query-enforced temporal referential integrity. (02/08) Temporal referential
integrity enforced by filtering out any violations at query time.

1. Unnecessary if update-enforced temporal referential integrity is used

instead.

• Queryable history. (02/08) Data about an object which was valid at some time in
the past, which is no longer currently valid, but which as easily and rapidly
accessible as current data.

1. “As easily and rapidly accessible as current data” means what it says. Our

way of providing this access is to use version tables. In such tables,
production queries against current data (the most common kind of query)
can be used to retrieve historical data simply by adding a date to a
BETWEEN clause of a SQL statement that would, without that addition,
retrieve the corresponding current data from an object table.

2. As we have mentioned before (and will again), providing queryable

history, in this manner, can significantly lower the development and
operations cost of accessing historical data, and significantly improve the
currency of the historical data retrieved.

• Standard referential integrity, standard RI. (02/08) The referential integrity
constraint among non-versioned tables that today's RDBMSs can enforce.

1. Since we are calling these non-versioned tables "object tables", we

erroneously equated object RI with standard RI in Part 19.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 10.

• Supercede, supercession. (02/08) In these articles, we use these terms to refer to

the replacement of a current version with a new current version.

1. Supercession is a logical function. Physically, supercession is done by
inserting a new row in a version table.

2. Deletion in a version table is always done via supercession.

3. Versionable updates, in a version table, are always done via supercession.

4. However, creating the first version of an object does not involve

supercession, as there is no current version of that object to supercede.

5. A more subtle point. Creating the first version of an episode of an object
also does not involve supercession. Even if other versions of an object
exist, the last version of every non-current episode is either a delete
version, or a version whose effectivity end date is in the past. Thus, when
a new episode is started, the most recent prior version of that object is not
a current version. Thus, there is no current version of the object to
supercede when that new episode begins.

• Temporal delete. (03/08) The result of translating an original delete into a
physical transaction that supercedes all active versions of the original object, and
also all active versions of all temporally RI dependent objects.

1. Just as a normal delete is an invalid transaction if the row representing the

object in question is not on the database, a temporal delete is an invalid
transaction if a row representing the current version of the object in
question is not on the database.

• Temporal insert. (03/08) The result of translating an original insert into a physical
transaction against a version table.

1. Just as a normal insert is an invalid transaction if the row representing the

object in question is already on the database, a temporal insert is an invalid
transaction if a row representing the current version of the object in
question is already on the database.

2. These temporal inserts are always physical inserts of a new version of the

object in question.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 11.

3. Note that temporal inserts may be of either current versions or of future-
dated versions. In other words, the effective begin date of the temporal
insert may be either the date of the physical transaction itself, or some
future date.

4. If a temporal insert is a valid transaction, either the object was never

represented in the database, or else it was represented but its most current
episode is terminated at the time of the temporal insert. In either case,
there will be no non-deleted future-dated versions to worry about.

• Temporal (row-level) update. (03/08) The result of translating an original update
into a physical transaction against a version table.

1. Just as a normal update is an invalid transaction if the row representing the

object in question is not on the database, a temporal update is an invalid
transaction if a row representing the current version of the object in
question is not on the database.

2. These temporal updates are always physical inserts of a new current

version that supercedes the version current at the time the transaction
began.

3. In addition, if there are any future-dated versions of that object, they are

also updated in the same manner. Each one is superceded by a new version
based on the version it is replacing, updated with the temporal update.

4. There will be no clock ticks lying between the effectivity end date of the

superceded version, and the effectivity begin date of the superceding
version. The latter immediately follows the former.

• Temporal transaction. A transaction against the active episodes of an object.

1. A temporal transaction is always the result of a mapping from an original
transaction.

• Temporal update. (03/08) The result of translating an original update into a
physical transaction that affects one or more rows of one or more version tables.

• Temporal upsert. (03/08) The result of translating an original upsert into a
physical transaction against a version table.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 12.

1. These temporal upserts are always inserts of a current version. If a current

version already exists on the database when the transaction begins, the
temporal upsert becomes a temporal update. Otherwise, it becomes a
temporal insert.

2. A temporal update inserts a non-initial version into a current episode. A

temporal insert inserts the inaugural version of a new episode.

3. Any clock-tick gap between two versions exists between the last version
of one episode and the first version of its successor episode. As a
corollary, any pair of versions with no clock-tick gap between them
belong to the same episode.

4. For what happens at that point, see "temporal insert" and "temporal

update".

• Temporal referential integrity, temporal RI. (03/08) If there is a temporal RI
dependency from table Y to version table X (not necessarily distinct), then no
exposed state of the database is valid in which any row in table Y is not object-RI
linked to a row in table X whose effectivity time period wholly contains the
effectivity time period of the row in table Y (if table Y is a version table). No
queries are valid that would expose such a state.

1. Revised the definition to be based on the concept of an "exposed state" of

the database. See the introduction to Part 21 for the motivation for this
change.

2. See the entries "update-enforced temporal referential integrity", and

"query-enforced temporal referential integrity".

• Terminating an episode. (03/08) Ending an episode by superceding its most recent
version with a temporal delete version.

• Update-enforced temporal referential integrity. (03/08) Temporal referential
integrity applied to transactions which update the database, and which therefore
prevents violations of temporal referential integrity from appearing on the
database.

1. Ill-advised if this form of integrity checking would incur a large number of

physical I/Os.

Time and Time Again: Managing Time in Relational Databases. Glossary.
© Tom Johnston and Randy Weis, 2008.
Printed on 3/17/2008, at 8:21 AM. Page 13.

• Version, version table. (03/08) A table whose rows represent versions of

persistent objects.

1. A version of a persistent object is a time-slice of that object. A row in a
version table represents a version, and describes that object as it was, is,
will be and/or might be during its effectivity time period.

2. A row in a version table is what the custodians of the table believe is the

truth about the object it represents, during the indicated effectivity time
period.

• Versionable updates. (03/08) Original updates to a versioned table which cause a
new version to be inserted.

1. In these articles, we have assumed that all original updates to versioned

tables will cause a new version to be inserted. But in reality, the business
is likely to want to track changes to only selected columns of a table. For
the other columns, an original update can be applied as an update in place,
and does not require creation of a superceding version.

• Wholly contained in (for effectivity time periods). (03/08) Time period 2 is
wholly contained in time period 1 if and only if the effectivity begin date of time
period 2 is equal to or later than the effectivity begin date of time period 1, and
the effectivity end date of time period 2 is equal to or earlier than the effectivity
end date of time period 1.

1. In order to implement this constraint in today's production databases, we

rely on SQL data types and operators. Specifically, we rely on dates and/or
timestamps, and the DBMS implementation of comparison operators for
those data types.

	Glossary.

